(+)분류 : 가져온 문서/오메가
유니터리 군(Unitary group) 은 차 정방 유니터리 행렬로 이루어진 군이다.
1. 특징 ✎ ⊖
1.1. 수학 ✎ ⊖
수학적인 입장에서, 모든 원소는 의 원소이다. 유니터리 군의 한 원소 에 대하여, 어떤 차 정방 에르미트 행렬 에 대해
의 관계를 가진다. 양자역학의 수학적 체계에서 이 식은 시간에 대한 평행이동, 또는 공간에 대한 평행이동을 나타내는 것이며, 는 해밀토니안 연산자 또는 운동량 연산자로 대치된다. 앞에서의 관점을 좀 더 확장하면, 유니터리 군의 모든 원소는 단 하나의 원소 와 연산자 로 나타낼 수 있다. 즉, 임의의 원소 에 대하여 이다. 이 식에서, 에르미트 행렬 를 생성자(Generator)라고 한다.
생성자는 기저가 어떠한가에 따라 다시 생각해 볼 수 있다. 생성자의 기저 끼리의 교환자가
로 나타낼 수 있는 경우, 를 구조상수(Structure Constants)라고 한다. 이러한 관계에 있는 기저끼리의 반교환자는
이다. 만약 기저들을 알고 있는데, 구조상수와 반교환계수 를 모른다면
로 계산할 수 있다.
의 관계를 가진다. 양자역학의 수학적 체계에서 이 식은 시간에 대한 평행이동, 또는 공간에 대한 평행이동을 나타내는 것이며, 는 해밀토니안 연산자 또는 운동량 연산자로 대치된다. 앞에서의 관점을 좀 더 확장하면, 유니터리 군의 모든 원소는 단 하나의 원소 와 연산자 로 나타낼 수 있다. 즉, 임의의 원소 에 대하여 이다. 이 식에서, 에르미트 행렬 를 생성자(Generator)라고 한다.
생성자는 기저가 어떠한가에 따라 다시 생각해 볼 수 있다. 생성자의 기저 끼리의 교환자가
로 나타낼 수 있는 경우, 를 구조상수(Structure Constants)라고 한다. 이러한 관계에 있는 기저끼리의 반교환자는
이다. 만약 기저들을 알고 있는데, 구조상수와 반교환계수 를 모른다면
로 계산할 수 있다.
1.2. 물리학 ✎ ⊖
입자물리학에서, 하이퍼차지(Hypercharge)에 대한 상호작용은 군으로 기술할 수 있다. 또한 양자역학에서, 파동함수의 시간에 대한 대칭성이나 공간의 한 축에 대한 대칭성 역시 군에서 찾을 수 있다.