(+)분류 : 가져온 문서/오메가
Quadratic Gauss Sum
홀소수 p와 서로소인 정수 a, Primitive pth root of unity인 \\zeta에 대한 다음 꼴의 합을 말한다.
\\sum_{n=0}^{p-1} \\zeta^{a\\cdot n^2}=\\zeta^{a\\cdot0^{2}}+\\zeta^{a\\cdot1^{2}}+...+\\zeta^{a(p-1)^{2}}
1. 표현 ✎ ⊖
일반적으로 이차 가우스 합은 \\displaystyle G(k;p)=\\sum_{n=0}^{p-1} \\zeta^{k\\cdot n^2}로 표기하며, 다음과 같은 형태를 띤다.
p\\nmid k인 홀소수 p와 a\\geq2에 대해 G(k;p^a)=pG(k;p^{a-1})임에서
- G(k;n)=\\sum_{r=1}^n e^{2\\pi ikr^2/n}
p\\nmid k인 홀소수 p와 a\\geq2에 대해 G(k;p^a)=pG(k;p^{a-1})임에서
- G(k;p^a)=\\begin{cases}p^{a/2}&\\text{if } a \\text{ is even}\\\\ p^{(a-1)/2}G(k;p)&\\text{if } a \\text{ is odd}\\end{cases}
2. 르장드르 기호 ✎ ⊖
이차 가우스 합은 다음과 같이 르장드르 기호로 나타낼 수 있다.
\\zeta^{a\\cdot0^{2}}+\\zeta^{a\\cdot1^{2}}+...+\\zeta^{a\\cdot(p-1)^{2}}
\\zeta^{a\\cdot0^{2}}+\\zeta^{a\\cdot1^{2}}+...+\\zeta^{a\\cdot(p-1)^{2}}
- =1+2\\sum_{n\\in QR}^{ }\\zeta^{an} (QR: 이차 잉여, QNR: 이차 비잉여)
- =1+(\\sum_{n\\in QR}^{ }\\zeta^{an}+\\sum_{n\\in QR}^{ }\\zeta^{an})+(\\sum_{n\\in QNR}^{ }\\zeta^{an}-\\sum_{n\\in QNR}^{ }\\zeta^{an})
- =(\\sum_{n\\in QR}^{ }\\zeta^{an}-\\sum_{n\\in QNR}^{ }\\zeta^{an})+(1+\\sum_{n\\in QR}^{ }\\zeta^{an}+\\sum_{n\\in QNR}^{ }\\zeta^{an})
- =(\\sum_{n\\in QR}^{ }1\\cdot \\zeta^{an}-\\sum_{n\\in QNR}^{ }(-1)\\cdot \\zeta^{an})+\\sum_{n=0}^{p-1}\\zeta^{an}
- =\\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{an}
3. 절댓값 ✎ ⊖
g(a) = \\zeta^{a\\cdot0^{2}}+\\zeta^{a\\cdot1^{2}}+...+\\zeta^{a(p-1)^{2}} =\\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{an} 이라고 하자.
3.1. g(a) ✎ ⊖
g(a) = \\left(\\frac{a}{p}\\right) g(1)
3.1.1. 증명 ✎ ⊖
\\left(\\frac{a}{p}\\right) g(a) = \\left(\\frac{a}{p}\\right)\\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{an} = \\sum_{n=1}^{p-1}\\left(\\frac{an}{p}\\right)\\zeta^{an} = \\sum_{l=1}^{p-1}\\left(\\frac{l}{p}\\right)\\zeta^{l} = g(1)
\\left(\\frac{a}{p}\\right)\\left(\\frac{a}{p}\\right)g(a) = \\left(\\frac{a}{p}\\right) g(1)
\\left(\\frac{a}{p}\\right)\\left(\\frac{a}{p}\\right)g(a) = \\left(\\frac{a}{p}\\right) g(1)
- \\therefore g(a) = \\left(\\frac{a}{p}\\right) g(1)
3.2. |g(1)| ✎ ⊖
|g(1)| = \\sqrt{(-1)^{\\frac{p-1}{2}}p}
3.2.1. 증명 ✎ ⊖
\\sum_{a=0}^{p-1}g(a)g(-a) 의 값을 두 가지 방법으로 구해 보자.
\\textup{(i)} \\sum_{a=0}^{p-1}g(a)g(-a) = \\sum_{a=0}^{p-1}\\left(\\frac{a}{p}\\right)g(1)\\cdot\\left(\\frac{-a}{p}\\right)g(1)
\\textup{(ii)} \\sum_{a=0}^{p-1}g(a)g(-a)
(p-1)\\left(\\frac{-1}{p}\\right)\\{g(1)\\}^{2} = p(p-1)
\\{g(1)\\}^{2} = \\left(\\frac{-1}{p}\\right)p = (-1)^{\\frac{p-1}{2}}p
\\textup{(i)} \\sum_{a=0}^{p-1}g(a)g(-a) = \\sum_{a=0}^{p-1}\\left(\\frac{a}{p}\\right)g(1)\\cdot\\left(\\frac{-a}{p}\\right)g(1)
- = \\sum_{a=1}^{p-1}\\left(\\frac{-1}{p}\\right)\\{g(1)\\}^{2}
- = (p-1)\\left(\\frac{-1}{p}\\right)\\{g(1)\\}^{2}
\\textup{(ii)} \\sum_{a=0}^{p-1}g(a)g(-a)
- = \\sum_{a=0}^{p-1}(\\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{an}\\cdot\\sum_{n=1}^{p-1}\\left(\\frac{m}{p}\\right)\\zeta^{am})
- = \\sum_{a=0}^{p-1}\\sum_{n=1}^{p-1}\\sum_{m=1}^{p-1}\\left(\\frac{n}{p}\\right)\\left(\\frac{m}{p}\\right)\\zeta^{a(n-m)}
- = \\sum_{n=1}^{p-1}\\sum_{m=1}^{p-1}\\left(\\frac{n}{p}\\right)\\left(\\frac{m}{p}\\right)\\sum_{a=0}^{p-1}\\zeta^{a(n-m)}
- = \\sum_{n=1}^{p-1}\\sum_{1\\leq m\\leq p-1, m\\neq n}^{ }\\left(\\frac{n}{p}\\right)\\left(\\frac{m}{p}\\right)\\sum_{a=0}^{p-1}\\zeta^{a(n-m)}+\\sum_{n=1}^{p-1}\\sum_{1\\leq m\\leq p-1, m=n}^{ }\\left(\\frac{n}{p}\\right)\\left(\\frac{m}{p}\\right)\\sum_{a=0}^{p-1}\\zeta^{a(n-m)}
- = 0 +\\sum_{n=1}^{p-1}\\sum_{m=n}^{ }\\left(\\frac{m}{p}\\right)\\left(\\frac{m}{p}\\right)\\sum_{a=0}^{p-1}1
- = 0 +\\sum_{n=1}^{p-1}p
- = p(p-1)
(p-1)\\left(\\frac{-1}{p}\\right)\\{g(1)\\}^{2} = p(p-1)
\\{g(1)\\}^{2} = \\left(\\frac{-1}{p}\\right)p = (-1)^{\\frac{p-1}{2}}p
- \\therefore |g(1)| = \\sqrt{(-1)^{\\frac{p-1}{2}}p}
4. 이차 상반법칙 ✎ ⊖
아래와 같은 방법으로 이차 상반법칙을 증명할 수 있다.
g(a) = \\zeta^{a\\cdot0^{2}}+\\zeta^{a\\cdot1^{2}}+...+\\zeta^{a(p-1)^{2}} =\\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{an} 이라고 하자. p와 서로소인 홀소수 q에 대해 \\{g(1)\\}^{q}를 두 가지 방법으로 정리하자.
\\textup{(i)}\\ \\{g(1)\\}^{q} = \\{ \\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{n} \\} ^{q}
\\textup{(ii)}\\ \\{g(1)\\}^{q} = g(1)\\cdot[\\{g(1)\\}^{2}]^{ \\frac{q-1}{2} }
\\textup{(i), (ii)}에서
\\left(\\frac{q}{p}\\right)g(1) \\equiv g(1)\\cdot(-1)^{\\frac{p-1}{2}\\frac{q-1}{2}}\\left(\\frac{p}{q}\\right) \\; (mod\\; q)
\\left(\\frac{q}{p}\\right) \\equiv (-1)^{\\frac{p-1}{2}\\frac{q-1}{2}}\\left(\\frac{p}{q}\\right) \\; (mod\\; q)
\\left(\\frac{p}{q}\\right)\\left(\\frac{q}{p}\\right) \\equiv (-1)^{\\frac{p-1}{2}\\frac{q-1}{2}} \\; (mod\\; q)
따라서 이차 상반법칙이 증명된다.
g(a) = \\zeta^{a\\cdot0^{2}}+\\zeta^{a\\cdot1^{2}}+...+\\zeta^{a(p-1)^{2}} =\\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{an} 이라고 하자. p와 서로소인 홀소수 q에 대해 \\{g(1)\\}^{q}를 두 가지 방법으로 정리하자.
\\textup{(i)}\\ \\{g(1)\\}^{q} = \\{ \\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right)\\zeta^{n} \\} ^{q}
- \\equiv \\sum_{n=1}^{p-1}\\{\\left(\\frac{n}{p}\\right)\\zeta^{n}\\} ^{q} = \\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right) ^{q}\\zeta^{nq} = \\sum_{n=1}^{p-1}\\left(\\frac{n}{p}\\right) \\zeta^{nq}
- = \\sum_{n=1}^{p-1}\\left(\\frac{q}{p}\\right)\\left(\\frac{q}{p}\\right)\\left(\\frac{n}{p}\\right) \\zeta^{nq} = \\left(\\frac{q}{p}\\right)\\sum_{n=1}^{p-1}\\left(\\frac{nq}{p}\\right)\\zeta^{nq}
- = \\left(\\frac{q}{p}\\right)\\sum_{l=1}^{p-1}\\left(\\frac{l}{p}\\right)\\zeta^{l} = \\left(\\frac{q}{p}\\right)g(1) \\; (mod\\; q)
\\textup{(ii)}\\ \\{g(1)\\}^{q} = g(1)\\cdot[\\{g(1)\\}^{2}]^{ \\frac{q-1}{2} }
- = g(1)\\cdot\\{(-1)^{\\frac{p-1}{2}}p\\}^{ \\frac{q-1}{2} }
- = g(1)\\cdot(-1)^{\\frac{p-1}{2}\\frac{q-1}{2}}p^{ \\frac{q-1}{2} }
- \\equiv g(1)\\cdot(-1)^{\\frac{p-1}{2}\\frac{q-1}{2}}\\left(\\frac{p}{q}\\right)\\; (mod\\; q)
\\textup{(i), (ii)}에서
\\left(\\frac{q}{p}\\right)g(1) \\equiv g(1)\\cdot(-1)^{\\frac{p-1}{2}\\frac{q-1}{2}}\\left(\\frac{p}{q}\\right) \\; (mod\\; q)
\\left(\\frac{q}{p}\\right) \\equiv (-1)^{\\frac{p-1}{2}\\frac{q-1}{2}}\\left(\\frac{p}{q}\\right) \\; (mod\\; q)
\\left(\\frac{p}{q}\\right)\\left(\\frac{q}{p}\\right) \\equiv (-1)^{\\frac{p-1}{2}\\frac{q-1}{2}} \\; (mod\\; q)
- \\therefore \\left(\\frac{p}{q}\\right)\\left(\\frac{q}{p}\\right) = (-1)^{\\frac{p-1}{2}\\frac{q-1}{2}}\\; \\; (\\because \\left(\\frac{p}{q}\\right), \\left(\\frac{q}{p}\\right), (-1)^{\\frac{p-1}{2}\\frac{q-1}{2}} \\in \\{1, -1\\})
따라서 이차 상반법칙이 증명된다.
5. 보기 ✎ ⊖
- 가우스 합 G(\\chi)=\\tau(\\chi)=\\tau_\\chi